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a means to this end, then one must be able to associate to this system a
local permeability and permittivity with negative values that keep an anal-
ogy with those of an effective medium, in other words, both the effective €
and p should depend on the frequency w only, and not on the components
of the wavevector. This is not at all obvious from the combination of the
metallic circuit elements [17].

Concerning superlenses with complex media constituting negative index
slabs, we prove that amplified waves inside ideally lossless, dispersiveless
negative index media are limited to a penetration depth equal to the focus-
ing distance inside such slabs, and hence no superfocusing including evanes-
cent components can be obtained. In addition, the presence of absorption
is very difficult to overcome, it easily transforms amplified components of
the wavefield into decaying ones.
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LOCAL FIELD STATISTIC AND PLASMON LOCALIZAT]
IN RANDOM METAL-DIELECTRIC FILMS
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Abstract. A new, exact and efficient numerical method for calculating
effective conductivity and local-field distributions in random R-L-C
works is developed. Using this method, the local field properties of ran
metal dielectric films are investigated in a wide spectral range and for a -
ety of metal concentrations p. It is shown that for metal concentrations ¢
to the percolation threshold (p = p.) and frequencies close to the resons
the local field intensity is characterized by a non-Gaussian, exponent
broad distribution. For low and high metal concentrations a scaling regi
formed that is due to the increasing number of non-interacting dipoles.
local electric fields are studied in terms of characteristic length parame
Properties of both localized and extended eigenmodes in the Kirchh
Hamiltonian are investigated.

1. Introduction

The last two decades was a time of immense improvement in our un
standing of the optical properties of inhomogeneous media [1]. One of
important representatives of such media is a metal-dielectric compc
near the percolation threshold. This type of nanostructured materials
attracted recently lots of attention because of their unique electromagr
properties. Many fundamental phenomena, such as localization and «
calization of electrons and optical excitations, play an important rol
random media. The light-induced plasmon modes in metal-dielectric
posites can result in dramatic enhancement of optical responses in a b
spectral range. In particular, percolation metal-dielectric films can be
nloved for surface-enhanced spectroccopyv with unstirnacsed senaitivity
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for development of novel optical elements, such as optical switches and
efficient optical filters, with transparency windows induced by local photo-
modification in the composite films.

In the optical and infrared spectral ranges, the metal dielectric permit-
tivity has, typically, a negative real part, so that metal particles can be
viewed as inductance elements with small losses (R—L elements). In accor-
dance with this assumption, a metal-dielectric composite can be treated
as an R—L-C network, where the C elements stand for dielectric grains,
which have a positive dielectric permittivity. Many different-approaches
based on the effective-medium theories and various numerical models have
been suggested to describe the optical nonlinearities of such systems [2]. In
particular, a number of numerical simulations have been carried out by us-
ing the real space renormalization group [3-8]. A recently developed scaling
theory [4-8] for the field fluctuations and high-order field moments predicts
localization of the surface plasmons in percolation composites and strong
enhancement for the local field, resulting from the localization. Experimen-
tal observations [7, 9] in accord with the theoretical predictions show the
existence of giant local fields, which can be enhanced by a factor of 10°
for the linear response and 10%° and greater for the nonlinear response. A
recent study [10] of the plasmon modes in metal-dielectric films gives more
insights into the problem. Thus, in Ref. [10] it was found that for all stud-
ied systems the local fields are concentrated in nanometer size areas, while
some of the eigenstates are not localized.

Despite the progress, computer modeling of the electric field distribution
in metal-dielectric nanocomposites was restricted so far to mainly approx-
imate methods, such as the real space renormalization group (RSRG). To
some extent, this was justified since the focus of those calculations was on
the effective properties, such as the macroscopic conductivity and dielec-
tric permittivity. Many fast algorithms were suggested for determining the
effective conductivities; those include very efficient models, such as Frank
and Lobb Y — V transformation [11], the exact numerical renormalization
in a vicinity of the percolation threshold [12-14], and the transfer maftrix
method [15]. Unfortunately, all these methods cannot be used for precise
calculation of the local-field distribution and a new approach is needed.

The relaxation method (RM) was one of the first algorithms to give some-

insight into the field distributions [16]. This method has the advantage of
using the minimum possible memory, which is proportional to the num-
ber of the sites, L%, where L is the size of the system and d is the space
dimensionality. The fast Fourier acceleration [17] allows one to perform
calculations for both 2D and 3D percolation systems. However, the “criti-
cal slowing down” effect and the problem of stability (occurring when the
taginary nart of the local condiietivity takes both positive and necative

values) restricts the use of this approach. Thus, the local-field statisti
.@muooymaob composites in the optical and infrared spectral ranges wa
wb,\mmammdm& until very recently, with direct numerical methods not in
Ing any a priori assumptions. In their work, Zekri, Bouamrane, and |
[18] suggested a substitution method, which allows one to calculate the
field distributions in percolation metal-dielectric composites in the of
range. However, results obtained for the local-field intensity I = |E _m d
bution function P (I) appear to be rather surprising. Specifically, inste
the predicted theoretically and observed experimentally onrmdmmﬁms
the local field, the authors of Ref. [18] obtained average local field int
ties far less than the applied field. We note that the high local fields
2 crucial role in enhancement for nonlinear optical effects and thus
mmportant to verify this prediction by exact calculations.

In this work we apply a new numerical method, which we refer t
Eoow elimination (BE) [19]. The BE method allows calculations of e
tive parameters (such as the conductivity, dielectric permittivity, etc.)
most importantly, the local field distribution in inhomogeneous media
focus our attention on the local-field distribution P (I) and compar
sults obtained by the BE with those following from the RSRG, the re
mﬁo.b method, and the Zekri-Bouamrane-Zekri (ZBZ) method. mv@mnwmo
we investigate the properties of two-dimensional random metal-diele
composites by modeling them as a square lattice with the lattice si;
comprised of dielectric and metal bonds, with conductivity o4 and oy,
.m@moﬁd\.&%. The probability of a bond to have the metal conductivity
is equal to p (where p is the metal concentration) while the probab
to have the dielectric conductivity oy is equal to 1 — p. We obtain -
the local electric field is characterized by sharp peaks that can exceed
applied field by several orders of magnitude, in agreement with earlier
oretical predictions and experimental observations [4-9]. The field max
are associated with the localized surface plasmons. For the first time a,
set of field distribution functions P (I) that gradually transform from
“one-dipole” field distribution to the log-normal distribution are calculs
by using the newly developed BE method. Relying on an approach bs
on the inverse participation ratio, we find important relations for the {
oﬁ.ﬁa@aou length &, average field localization length &r, and the aver
distance between the metal particles &,. The eigenvalue problem is sol

directly and effects due to the existence of extended states, predictec
[10] are investigated.
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2. Block Elimination (BE) Method

In the explanation of the Block Elimination method we will follow the
outline introduced in our previous work [19]. We will consider the problem
of a local field distribution in nanoscale metal-dielectric films at and away
from the percolation threshold. When the wavelength X of the incident light
is much larger than the metal grain size a we can introduce local potential
o(r) and local current j(r) = o(r) - (—Ve(r) + Eg), where Eq is the applied
field and o(r) is the local conductivity. In the quasistatic approximation,
the problem of the potential distribution is reduced to solving the current
conservation law V - j(r) = 0, which leads to the Laplace equation V -
[0(r) - (=Vp(r) + Eg)] = 0 for determining the potentials. Now we use
the discretization procedure based on the tight-binding model. The film is
described as a binary composite of metal and dielectric particles, which are
represented by metal and dielectric bonds in the square lattice. The current
conservation for lattice site ¢ acquires the following form

> " oii(0i — pj + Bij) =0, (1)
J

where ¢; is the field potential of site . The summation is over the nearest
(to ) neighbor sites j; 0;; = 0; are the conductivities of bonds connecting
neighbor sites ¢ and j and Ej; are the electromotive forces. The electromo-
tive forces E;; are defined so that Ej; = aEy, for the bond leaving site i in
the “+y” direction, and E;; = —aFp, for the bond in the “~y” direction;
E;; is zero for the “x” bonds. Note that E;; = —Ej;.

Numerical solution to the Kirchhoff’s equations (1) in the case of large
lattice sizes encounters immense difficulties and requires very large memory
storage and high operational speed. A full set of the Kirchhoff equations
for a square lattice of size L is comprised of L? separate equations. This
system of equations can be written in the matrix form

~

H-®=F, (2)
where H is a symmetric, L? x L?, matrix that depends on the structure and
composition of the lattice, ® = {p;}, and F = AI MUQ. Q@.@&v are vectors

of size L?, which represent the potentials and applied field at each site and
bond. In the literature, the matrix H is called the Kirchhoff Hamiltonian

(KH) and it is shown to be similar to the Hamiltonian for the Anderson
transition problem in quantum mechanics [5, 7-9]. The Kirchhoff Hamil-

tonian is a sparse random matrix with diagonal elements H;; = MM. Oij
(where the summation is over all bond conductivities oy; that connect the
i-th site with it neighbors) and nonzero off-diagonal elements H;; = —o;
For detailed description of the KH see the Appendix.

where A7) are I x I tridia

>k Oit(j—1)L, k (the summation is over the ne i
b t+(-DL, k \U16 summation is over the nearest neighbors of the s

In principle, Eq. (2) can be solved
Gaussian elimination to the matrix F [
proportional to ~ L% and re
estimations show that the direct Gau
for large lattice sizes, I > 40, becaus
run aBm»m for all contemporary pers
matrix H has a simple symmetrical
of block elimination procedure that ¢
time and memory.

) :Hw calculations, we can apply the periodic boundary conditions fc
z” and “y” directions; alternatively, we can also impose parallel
electrode-type boundaries. In the case of the periodic boundar oosmw,.
we suppose that the sites in the first row of the [, x L lattice me conn
to the L-th row, whereas the sites of the first column are connected t
last column. Then the Kirchhoff’s equations for the first site in th
row, for example, have the following form )

directly by applying the sta
: 20]. This procedure has a ru;
quires a memory space of the order of L4, &

S

ssian elimination cannot be a
e of the memory restrictions an
onal computers. Fortunately, th
structure that allows implemen:
an reduce significantly the opera

01,L AGH - Ghv + 01,2 ASH - Swv + 01,02 L+1 ?S — Y72
01L+1(P1 — r41 + aFp) =0,

~1+1 — aFyp).

g.\wﬁ.o. 01,1, is the conductivity of the bond connecting the first and the
m?mm in the first row. The 01,2 conductivity oObSoQM the first and se
sites in the first row, O1,.2-L+1 connects the first site of the first row anc
first site of the L-th TOW, 01,141 connects the first sites of the first and
second rows, and the external field Ey is applied in the “+y” direction. I
that .ﬁ.ym oLL and oy 72 711 connections are due to the periodic woz.E
conditions in the “z” and “y” directions, respectively.
In Eq. (3) we numerate the sites of the I, x L lattice «
1 (for the first site in the first row) to L? (
Then, the KH matrix H acquires a blo
for a system with size L

: Tow by row”, f
for the last site in the L-th re

! ck-type structure. As an exam
= b, the matrix H takes the following block fc

R p(12) 0 A8
X R(2L  p(22)  p(28) 0 0
H=| 0 »B2 569 69
0 0 hr43) p4) ps)
RBY g 0 pBY pG5)

gonal matrices with diagonal elements Fm@. “
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diagonal matrices Rk = pUR) (K £ 1) ooHEmQ..U the k-th row &aﬂw Mrm m
th row and vice versa. The matrices in the right upper ma.a H_Hw mamw
bottom corners of the KH matrix H are due to the periodica OEM MM
conditions: they connect the top and the Uogo.E Hogmm&ma \mrmﬁmw,mﬁ an N Mb
last columns. The explicit forms for the matrices A%/ and h'*" are g

in the Appendix. . .

_ For Mwmm sizes L, the majority of the Eome i.sv are zero J&EMMM
and thus Gaussian elimination will be a very inefficient way to mM ,mw she
system (2). In fact, in a process of elimination of all U._oow &mﬂmw S % oy
A1) in matrix (4), the only matrix elements that will mrmmmm Mﬁm onm
R12), h(22), R(15) and h(® with two more elements appearing in HM mm sec e
and last rows. Thus to eliminate the first block column OM gm,w i MW ME
instead of H work with the following 3L X 3L block matrix (recall tha

the considered example we choose, for simplicity, L = 5):

B p(2)  pQ5)
MY = D 0 ). (5)
pBL g G

Now to eliminate the first block column of matrix h™) we @E&W a mﬁ%ﬂ
dard procedure [19], where by using the &m.m.os& &mgo.sdm O*MH_Huwooa E.WS MT
h(1) as pivots we transform R in a ﬁﬁmﬁmwm H.bmﬁ.sn h an ,mw :
taneously eliminate (Y and RV, The mzspwzwﬁos of .ﬁrm ma.md woo :Bml
of hWand respectively H thus requires only .h simple m.grﬁoﬁ:wﬁ%@my
tions which is to be compared with L operations bmmmma if we work Mo M
with the whole matrix El. After the first step of this block elimination
completed the matrix H has the following form:

\9*35 \@*va 0 0 \o*?mv

0 },*Awwv #(23) 0 h(25)

AV =] o A®» a6 pGH 0 |, (6)
0 0 B43)  p(44) £,(45)
0 \wﬁmwv 0 w%mﬁ Eimmv

where we denote all blocks that have changed in the mm%memﬁw%m vwwoommm UM
the “x” superscript. The two new block elements h(®5) and h m%@m,ﬁm
due to the interactions of the first row with the second and the fifth rows.

. (1) e
As a second step, we apply the above procedure for the minor Hjy of

the matrix H() (which now plays the role of H), therefore we work again

2 DT s VDT vt i

p*(22)  p(23)  p(25)
R — R(32)  p(33) 0
h(52) 0 A *(55)

Repeating with h(® all operations we performed on h(¥) we put A
the triangular form and eliminate 232 and A52. We continue this
dure until the whole matrix H is converted into the triangular form wi
elements below the diagonal being zero. The backward substitution
triangular matrix is straightforward, namely we obtain first the site p
tials in the L-th row (the fifth row, in our example) and then, by calcul
the potentials, in the L — 1 row and so on, until the potentials in all
are obtained. The total number of operations needed is estimated as -
for the described block elimination (BE) method, which is less tha
number L°® needed for Gaussian or LU (for symmetric matrixes) elir
tion [20]. The BE has operational speed on the same order of magnitu
in the transfer-matrix method [15] and the Zekri-Bouamrane-Zekri ¢
method [18]. However, BE allows the calculation of the local fields, a
posed to the Franck-Lobb method, and we believe that it is much eas
numerical coding when compared to the ZBZ method.

For a Pentium II 450 MHz processor, the run time we observed is g
by the formula T'(L) ~ 3.2- 1077 - L*s, which for L = 250 is less
23 min. For each step of the BE procedure, we need to keep only L?
matrix mgv complex numbers in the operational memory and L3 on a
disk. By using the hard drive we do not decrease the speed perform
significantly because only L loadings of L? numbers are required, i.e.
additional operations in total. Note that the BE, similar to the Gaus
elimination, is well suited for parallel computing,.

We performed various tests to check the accuracy of the BE algori
described above. First, the sum of the currents at each site was calcul
and the average value ~ 10714 was found; this is low enough to claim
the current conservation holds in the method. Our calculations, using
standard Gaussian elimination (for small lattice sizes) and the relaxa
method (for the case of all positive conductivities), for the effective
ductivity and the local field distribution show full agreement with res
obtained using the developed block elimination procedure.

3. Results for 2D Parallel and L-type Lattices

In inhomogeneous media, such as metal-dielectric composites, both die
tric permittivity e(r) and conductivity o(r) = —iwe(r)/4r depend on

position r. When the size of the composite is much larger than the siz
inhomooeneitios +the offonticn mmm o dso tee 4 oo P
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cussed above, we model the composite by an R-L-C network and then
apply the BE method to find the field potentials at all sites of the square
lattice. When the potential distribution is known we can calculate the ef-
fective conductivity:

o [Bof” = g [ o) [B(E)Pde Q

where E(r) and Eq are the local and the applied fields, respectively (see,
e.g., [2]). The integration is performed over the film surface S.

It is well known that the effective DC conductivity for a two component
random mixture (o, 3> 04) should vanish as a power law, when the metal
concentration p approaches the percolation threshold p, i.e.,

Oe ™~ Q.SFQU - Envﬁ va

where t is the critical exponent, which was calculated and measured by
many authors. In the 2D case, the critical exponent is given by ¢ = 1.28 &
0.03, according to Derrida and Vannimenus [15], and ¢ = 1.294-0.02, accord-
ing to Frank and Lob [11]. The value ¢ = 1.33+0.03 was found by Sarychev
and Vinogradov [13], who used the exact renormalization group procedure
and reached the lattice size L = 500 in their simulations. In all cases, the
critical exponent t was calculated using the finite-size scaling theory [21].
When the volume fraction p of the conducting elements reaches the perco-
lation threshold pe, the correlation length increases as  ~ (p— pe) "7, where
v = 4/3 is the critical exponent for the correlation length [2]. Because the
correlation length ¢ determines the minimum size of the network, for which
it can be viewed as homogeneous, one expects that for I < &, the effective
conductivity depends on the system size L. The finite-size scaling theory
[22, 23] predicts the following dependence:

| oe(L) ~ L™ f(n), (10)

where the argument 7 = L/ (p — p.) depends on the system size L and on
the proximity to the percolation threshold p.. For a self-dual lattice, such
as the square lattice considered here, the percolation threshold is known
exactly: p. = 0.5. When calculations are carried out for p = p, there is no
need for knowledge of the specific form of the function f in Eq. (10).

We calculate the effective conductivity oe(L) for different sizes L. In
order to improve the statistics for each size L, a number of distinct realiza-
tions were performed. Specifically we used 40,000 realizations for L = 10;
5,000 realizations for L = 20; 1,000 realizations for L = 60; and 100 re-
alizations for L = 150. The data from our calculations was fit to Eq. (10)
and the v2 anslvaie wac anplied to determine the critical exponents. Thus

we found that ¢/v = 0.96 £ 0.03 and ¢ = 1.28 4+ 0.04. This result is i
agreement with the estimates of Derrida-Vannimenus and Frank-Lo!
somewhat lower than the ¢/v = 1.0 obtained by Sarychev and Vinog
Note that the value ¢/v = 1.0 is expected for the sizes L > 300 t]
greater than those we used in our estimates.

4. Local-Field Distribution Function

To further verify the accuracy of the block elimination method, we
explicitly the field distribution function, for the case when the c
tivities are positive and real numbers (i.e., the dielectric permitt
purely imaginary in this case). The local field distribution P(I) w
pled in terms of log I, where I = (|E — Eg|/|Ep|)? is the local field in
fluctuation with |Eg|? being the intensity of the applied field. If th
conductivities o4 and oy, are positive (resistor network), we can alsc
the relaxation method [17] and compare the results with those ot
with the BE procedure. Such a comparison is presented in Fig. 1,
the metal concentration is chosen to be equal to the percolation -
old p = p.. The distributions obtained with the two exact methos
Block Elimination (BE) and the Relaxation Method (RM), are nea
same. The minor deviations are due to the differences in the calc
procedures resulting in different round-off errors, and also because «
sufficient relaxation times. The local-field intensities are distributed :
wide range that extends from low filed intensities of the order of I
to very high values reaching I ~ 10%.

In the same figure, the field distribution obtained with the rea
renormalization group (RSRG) method is also shown. Among mc
portant results obtained with this non-exact method is the exten:
the distribution function toward small values of the field intensity I
a distortion is obtained for all distributions calculated with this m
however, this does not considerably affect the method’s applicabil
processes depending on the local field moments. The n-th moment
field M, = (|E|")/|Eo|™ is given by the spatial average over the fil
face and thus depends mainly on the local fields with the largest inte:
Because the RSRG calculations differ from the exact values only fc
intensity fields, the method can be used for estimation of the field mo

Although the case of real positive values for the conductivitie
considerable interest, more important physical problems arise wh
metal conductivity is complex. One special case corresponds to the s
plasmon resonance, which plays a crucial role in the optical and ir
spectral ranges for metal-dielectric composites. For the two-dimer
case, this resonance for individual particles occurs when oy = —a,
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log(I)

Figure 1. The local-field distribution P(I) calculated with two exact methods, Relax-
ation Method (RM) and Block Elimination (BE). Results of calculations with approxi-
mate, real-space renormalization group (RSRG) are also shown. The ratio of the (real)
conductivities for metal and dielectric bonds is chosen as o /o = 1072,

it can be investigated using a dimensionless set of conductivities o4 = —1,
and o = i + K, where i = v/—1 and k is a small real conductivity that
represents the loses in the system. Recall that in metal-dielectric films the
conductivity o, = —iwen, /47 is predominantly imaginary with very small
real part [23].

In Fig. 2, we show the local-field distributions calculated for three dif-
ferent values of &, using both the block elimination (BE) and the real
space renormalization group (RSRG) procedures. All functions obtained
by these two methods differ in shape and peak positions; however, taking
into account that the RSRG is indeed an approximate procedure, we can
conclude that qualitatively it performs relatively well. All the three local

field distributions, which are calculated with the exact BE method, can be -

approximated by the log-normal function:

(log I — (log I))? :
B 2A2 “ cc,

P(I) = exp

1
A\ 27

where (log I} is the average value for the logarithm of the local field inten-

sity T and A is the standard deviation in terms of log I (logz = log;gz):

H.O__._____~___.__,_

P(I)

Figure 2. Local-field distributions P(I) calculated for three different loss fac

w = 0.1,0.01, and 0.001, using BE and RSRG methods. All distributions are obtai
0T P = Pe.

This approximation for the field distribution seems to work sufficiently v
around the average value 5 = (log I). We note, however, that according
Ref. [25], where the current distribution was studied, Eq. (1 1) EOGQE%M
fail for the intensities I far from the logarithmic average 3. The occurre:
of log-normal distribution in a disordered system is related to localizat;
of plasmon modes. A similar type of dependence was found for the c
ductance in the Anderson transition problem [26]. In Fig. 2 we can a
see that (log I) and A both increase when k decreases. The increase in
logarithm of the average of the local field can be explained by correlatic
between the loss parameter x and the quality-factor, which leads to relat;

A _m_wv ~ 71 [4]): the smaller the losses, the higher the local fields.

The reference system with o4 = —i and 0,, = i+ k is an important ce

for studying some fundamental properties of metal-dielectric films, but
can not be applied for real metals, where ¢,,, depends on the waveleng!
In order to extend our studies to arbitrary materials we can use availal
experimental data and theoretical models. For the case of metals, the Dru
formula can be used that describes well important characteristics of +
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metal permittivity €m,. The formula is

em(w) = & — (wp/w)?/ (1 + iwr /W),

(12)

where ¢ is the contribution due to the inter-band transitions, wp is the
plasma frequency, and wr = 1/7 < wp is the relaxation rate. In our calcu-
lations we consider silver-glass film with the following constants: €4 = 2.2,
ey = 5.0, wp, = 9.1 eV, and w, = 0.021 [28]. In Fig. 3a we show the local field
distribution for two different wavelengths: one corresponding to the reso-
nance of individual particles w = wy, occurring at o4 = —0m (A ~ 370 nm)
and another shifted toward longer wavelengths. Again, we observe very wide
distributions whose widths increase with the wavelength and enhancement
factors reaching values of the order of 10°. We note that the log-normal
approximation Eq. (11) does not hold for frequencies shifted away from the
resonance.
The fact that we have extremely high local intensities for wavelengths
away from the resonance is remarkable by itself. This effect is due to the
interaction of metal particles and it is best manifested at concentrations
close to the percolation threshold. A similar long-wavelength spectral be-
havior was observed in fractal aggregates and is quantitatively explained
by the long range character of the dipole-dipole interaction [29]. Because
the dipole-dipole interactions are relatively weak, it is expected that for
Jow metal concentrations there should be considerable change in the field
distribution. To investigate thoroughly this dependence, we calculated the
local field distribution function P(I) for surface metal coverages that devi-
ate from the percolation threshold value. Our results are shown in Fig. 3b
where we plot the field distribution for three different metal concentrations:
p = 0.5, 0.01, and 0.001 at the resonant wavelength A = 370 nm. We also in-
clude the case of a single metal bond (dipole) positioned in the center of the
lattice. The graph shows that there is an apparent transition from the log-
normal (p = p,) distribution to a distributions with a “scaling” (power-law)
dependence. The appearance of such scaling regions is due to the transfor-
mation of the composite film from a strongly coupled dipole system at the
percolation threshold into a randomly distributed, sparse configuration of
non-interacting dipoles at lower metal concentrations. The range of the scal-
ing interval increases gradually with the decrease of the metal concentration
until it “consumes” the entire distribution for the case of a single dipole. In
two dimensions, a single dipole placed in the center of the coordinate system
induces an electric field with intensity I, (r,8) = cos® 8/ 4, wherer = |r
is the modulus of the radius-vector r = {z,y} and 6 is the angle between
the field polarization and r. To find the actual one-dipole field distribution
Pyi(I) we consider the above one-dipole intensity Ig;p(r, ) over the square

Iattien and then we count the “identical” magnitudes of the logarithm of
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A= 1pm at p = p.; (b) for different metal filling factors p at A = 370 nm (correspon

 the field-intensity I. The resultant curve for the one-dipole field distribut
(the solid line in Fig. 3b) should be compared with the field distribut
obtained by BE calculations for one metal bond positioned in the cente
the film. Both distributions match extremely well; it can be seen that

method captures even the smallest effects on the distribution caused by
cosine term and the square ceometrv of the lattice. The slope of the scal
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region is preserved for all concentrations p and can be fit to the relation
P(I) ~ I™®, where for the exponent we obtain the value @ = 3/2. The
same relation for the distribution function in the case of a single dipole can
be easily derived by calculating the integral Puip(I) = [f 6(I = Luip(r))dS,
where Igip(r) ~ 1/r* , & is the Dirac delta-function and S represents the
6lm surface. The same universal scaling was also found in fractals [30].

The wide distributions discussed above are probably difficult to observe
in experiments. In recent experiments [31, 32], the local filed was measured
over the film surface; both studies show local-field distributions P(I) that
are well extrapolated by the exponential functions and reach the maximum
field enhancement on the order of ~ 50. The strong decrease in the local
field intensity and the exponential shape of the distribution is explained by
the destructive interference which occurs when the field is collected from
an area that is considerably larger then the particle size. By taking into
account these interference effects in calculations, it was shown that the
theory describes well the experimental data [32].

5. Localization and High-Order Field Moments

One of the most important properties of the metal-dielectric composites is
the localization of the surface plasmons. In Ref. [27], the authors performed
estimations for surface plasmon localization, using the inverse participa-
tion ratio ipr = (S B — Eol%)/(C1 |B; — Eo[?)? = N~(I?)/(I)?, where
N = L% it the total number of sites while E; is the electric field vector corre-
sponding to i-th site. According to Ref. [27], the ipr for extended plasmons
should be size-dependent and characterized by a scale comparable to the
size of the system; if there is a tendency to localization, the corresponding
exponent should decrease and, for strongly localized fields, it should become
unity. For various loss factors  the authors of [27] found that ipr ~ L3
so that the field moment ratio is given as R = (IYJ{I)? = ipr x L4 ~ IO
This result leads to size-dependent field moments which for large L should
not be the case. Below we show that the earlier theory [4-8], which is
based on Eq. (1), is indeed size-independent and supports the conclusion
on plasmon localization with the exact BE method. We will also extract

that is under consideration and a is the average particle size. The s
m.m@msmmzoo for the one-dipole local-field moments is an expected va
since the weight of the low-magnitude fields becomes progressively lar
S:.&. the increase of the film surface. However, for practical applications |
are H.bﬁmwmmnmg in systems with large numbers of particles so that they “
be viewed as macroscopically homogeneous. We can write this condition
Ng = Q\.mav& > 1, or (aL/&)* = pL® > 1, where p is the volume fract
and &, is the average distance between the metal particles. Now for 4
theory to be size-independent (R(L) ~ const) the condition L > p~1/4 ]
to be enforced.

By investigating the dynamics of the field moments ratio R we ¢
also determine relationships between important statistical quantities, st
as field correlation length & and field localization length ¢ 7- By .&:w fi
correlation length &, we understand the average distance between
moﬂ @wm_aw, while we characterize their spatial extension by the field
calization length &; [23]. For non-overlapping peaks, one can find tl
R = .2.\A,\<¢N<wv = (&/&5)%, where N = (I/a)* = L% is the total nu
ber of sites, N, = (I/&)? is the total number of the field peaks, each
occupying Np = (£7/a)? sites. In general, for L > p~ /%, we mx“@ooﬁ R
be a function of p (but not of L) and «; the same is true for the statisti
length &,. ,

To determine this dependence we run calculations for two loss factc

K = o..H and x = 0.01. As illustrated in Fig. 4, for both cases, R can
approximated as: ,

Rl 0) =) { 0) ~ 00— )| 7 + 0= Ha-p 7},

Mipmao 6 is the step-function. For the exponent 7, we obtain the value whi
is close to the ratio 2/3. For p < 0.5 and d = 2 this value yields t
following relationship for the field correlation length: &, ~ ¢ ﬁuL\ 3/n(k)
&¢(&/a)?/®/n(k), where the function n(x) increases when x decreases. T
analysis of the ratio & /&; shows that we should expect an increase o.m 1

localization strength with a decrease of both surface coverage p and I
mmo\.aoH. #. In the special case of a single dipole we have R = Amw /€7)% = 31
which, combined with &, = aL, yields for the field localization length m

a3, N
. me localization of the electric filed into “hot” spots can be easily se
in Fig. 5, where we show (for different wavelengths) the spatial distributi
of the local intensity I (r), and the fourth moment of the local fields, I? (.
Note, that I%(r) is proportional to the local Raman scattering @M,oﬁm
that Raman-active molecules are coverine the film [7]. As mentioned. 1

some important relationships that describe statistical properties of the local
fields in semicontinuous metal films.

We first focus on the most simple case when there is only one dipole
in the entire space. For a single dipole it is easy to obtain the relation
R = ﬁwv\ﬁvm o~ wkwv where 3 = Imax/Imin is the ratio of the maximumn
(close to the particle) and minimum (away from the particle) in the field
intensities. Because of the power-law dependence Igip ~ r—4, there is a
e 112 — 172 where I i the leneth scale of space
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Figure 5. The spatial distributions of the normalized local intensity, I(z,y), anc
the “local Raman enhancement factor”, I*(z,y). The distributions are calculated at
different wavelengths: A = 0.370 um (a, b) and and XA = 10 pm (c, d). The metal fill
factor is chosen as p = p, for all cases.

Figure 4. ‘The ratio of the local-field moments, R = M,/ (M3)? as a function of the
metal coverage p, for two different values of the loss-factor x (both values satisfy the
inequality £&. < aL); the dashed lines represent fits based on Eq. (13).

higher-order field moments:

A a n—d
o = (o~ [ anfRBEIQEES i

onance condition for isolated silver particles is fulfilled at the wavelength
A ~ 370 nm. In Fig. 5, we see that the fluctuating local fields are well
localized and enhanced with the enhancement of the order of 10* for I (r),
and 10° for I (r). The spatial separation of the local peaks has a minimum
when the wavelength of the applied filed corresponds to the single parti-
cle resonance. In this case, most of particles resonate and the local filed
is enhanced randomly all over the film surface (Fig. 5a,b). With the in-
crease of the wavelength, only few spatial regions can support propagation
of plasmon modes which in turn leads to very high fields, significantly larger
than those observed in the single particle resonance case. All these resul
support the assumption of plasmon localization in random metal-dielectr.
films and they are in qualitative agreement with the previously develop
theory [4-8].

where n = 2,3,4,..., p(A) is the density of states, {¢(A) represents
average single mode localization length which corresponds to eigenvalue
and & is the loss factor [7]. This functional dependence was checked earl;
using the approximate real space renormalization group (RSRG) methe
where qualitative agreement was accomplished with Eq. (14). Howev
since the renormalization procedure is not exact, it is worth estimating |
field moments with the exact BE method. To determine the field mome:
M,,, we used the BE procedure for surface filling fraction p = p. and &
+1073. Our results are shown on the log-log scale in Fig. 6. The d:
oints represent a fit to a power law with each field moment having differe
xXponents.

For My we obtained the exponent zo = 1.0 £ 0.1, which is close to 1
me predicted by the scaling theory. For the third and the fourth momer
obtain that M3 4 ~ x~ %34, where the exponents z3 4 are estimated

Based on similarities between the Kirchhoff’s Hamiltonian H pﬁ@,ﬁ
quantum-mechanical Hamiltonian for the Anderson transition problem, tl
arnaling +hanry nredicte that there choild be a nower-law dependence forit
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Figure 6. High-order field moments Mz, M3, and My, as functions of the loss parameter
&; the calculations were performed for 100 different realizations in each case, for a lattice
with size L = 150.

z3 = 1.7+ 0.1, and z4 = 2.4 + 0.2 which are somewhat different from
the values predicted by Eq. (14): z3 = 2 and z4 = 3. This slight difference
between the predicted and calculated values of the field moments exponents
suggests the possibility of existence of non-localized or extended eigenmodes
in the bond percolation model. .

- As we have mentioned above the scaling solution (14) is based on the
assumption that the localization length &;(A) is finite for all A and it does
not scale with the size of the system. If the function £7(A) has a pole,
for example, at A = 0 (note that in the previous publications, we used
the notation £4 for this case), this can lead to a change in the scaling
indices, which is responsible for the difference above in the indices in Eq.
(14) and those found from the exact numerical method. The minimum of
the correlation length & at the percolation threshold and the log-norma
distribution resulting from the strong coupling between the dipoles als
suggest that at A = 0 we can expect localization-delocalization transitio
[10, 33]. To explicitly determine £¢(A) we solve the eigenvalue problem fo
the real part H’ of the Kirchhoff’s Hamiltonian H = H’ +ixkH” in 2D. Th
eigenvalue problem was solved with Mathematica software for lattice size
up to L = 50. In our calculations of the localization length we used th

e (A)
250

20

751

ToggelA]

_10-7.5-5-2.5 2.5 5 7.5 70"

Figure 7. Localization length &5 (A) as a function of the eigenvalues A calculatec

metal concentration equal to the percolation thr i
¢ X . eshold p.. The log-1 icts
scaling region with an exponent x =~ 0.14. Pe © Tof0B Inset depicts

inverse wmwaow@mﬁoz ratio so that for each eigenmode W,, that satisfies
equation H'¥,, = Ap W, the localization length for n-th mode mmzv

is gi
by ¢ = (5235 (B (i 14/ (8, [Ba (i, )P)H2, where By, = —v
Results for the average localization length £7(A) are shown in Fig. 7.
This figure illustrates that all states but A = 0 are localized as predic
by the theory. Localization lengths are symmetrically distributed with
spect to the zero eigenvalue and scale as a power law Er(A) ~ A™X (¢
can be seen from the log-log inset). For the delocalization exponent we _
tain a value x = 0.14 +0.02. By substituting the power law dependence
gm. field localization length in Eq. (14) and performing the integration
arrive at a new modified expression for the field moments in the form M,
=0+ Using this equation we easily obtain new exponents s mb%

that have the values z3 = 1.58 + 0.06 and 74 = 2.44 4+ 0.08. These ex;
nents are in much better agreement with those found in the simulatio
We note that although the presence of delocalized states at A = 0 resu
in a slight change of the critical exponents in Eq. (14), all basic conclusic

of .\%m previously developed scaling theory still hold because the relat
weight of the delocalized states is small.

The presence of non-localized states in random metal-dielectric £l
as also investigated by Stockman, Faleev and Bergman [10]. While $
esults we have presented are in qualitative agreement with Ref. [10],

s difficult to compare them itati is di i
quantitatively. This difficulty a
Q..Oﬁ ﬁu—\wm.ﬁ m,: #_\_b caletilatinmag ~F 4T T T 1t 1 a1 ;._‘V\‘ H.HM..@@ H.H.OHQWH
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rely on the gyration radius. However, for eigenstates consisting of two (or
more) spatially separated peaks, the gyration radius is characterized by the
distance between the peaks rather than by the spatial sizes of individual
peaks, which can be much smaller than the peak separation. In contrast,
the inverse participation ratio used above characterizes sizes of individual
peaks. We note that namely thus defined quantity {; enters Eq. (14) and
other formulas of the scaling theory.

6. Discussion and Conclusions

In this paper we introduced a new numerical method which we refer to
as block elimination (BE). The BE method takes advantage of a block
structure of the Kirchhoff Hamiltonian H and thus decreases the amount
of numerical operations and memory required for solving the Kirchhoff
equations for square networks. Note that this method is exact as opposed
to previously used numerical methods, most of which are approximate.
The results obtained show that the BE method reproduces well the known
critical exponents and distribution functions obtained by other methods.
The BE verifies the large enhancement of the local electric field predicted
by the earlier theory [4-8]. Specifically, the BE results are in good accord
with the estimates following from the real space renormalization group.

Besides suggesting a new efficient numerical method, we thoroughly ex-
amined the local field distribution function P (I') for different metal filling
factors p and loss factors k. The important result here is that in the optical
and infrared spectral range, the local electric field intensity is distributed
over an exponentially broad range; specifically, the function P (I) can be
characterized by the log-normal function. The latter result, however, holds
only in a close vicinity of the percolation threshold and for the light fre-
quencies close or equal to the surface plasmon resonance of individual metal
particles. For metal concentrations far away from the percolation region,
a power-law behavior was found for P (I). This “scaling” tail in the local
field distribution can be related to the one-dipole distribution function. The
BE method also verifies the localization of plasmons predicted earlier by
the scaling theory. The ensemble average high-order moments for the local
field have also been calculated. We found a power law exponents that are in
qualitative accord with the scaling theory. With the introduction of correc-
tions due to the presence of extended eigenmodes in the KH we obtained
very good agreement between theory and simulations.
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Appendix

In this Appendix we outline the construction of the KH in terms

bond conductivities. As we show in Section 2, the Kirchhoff equati
the quasistatic approximation provide solutions for the field distribu
a composite medium. We consider the construction of the matrix F
for the two-dimensional case (the three-dimension procedure is anals
and treat a metal-dielectric film as a square lattice of size L. Thi
potentials at the sites of the lattice are described by vector {i;},

i = 1,2,...,L2% All sites are connected by conducting bonds o j,

index j = {i — 1,4+ 1,i+ L,i — L} includes all the nearest 5&%&%
site 4. Then, we can re-write Eq. (1) in the following form:

1
IM_SMIH?E = i) = 0ii-1(0i — i—1)] + Boe (041 — 0i4-1)
1
||>.§,s.+i§.+h — i) — 04j-L(9s — @i—1)] + Eoy (0441 — 044-1) -

where A= a = 1/L is the bond length and the pair (Eq,, Eoy) repr
the components of the applied electric field. We can rewrite Eq. (15
slightly different way:

(39 (4 i
3,@. Pig(j—1)L T F.wﬁﬁ#c.r:ni + &w@%i@.LFL
+F:. PiriL + wm 3§.+c.nwvn = ﬁcvv
vawm =i+ (G-)L UL <4 <L? — L, the components of ma
h(9) and vectors F) can be written as F@m ) = Ot i1+ 0y 11 + 0y

. (49) __ (44 ,3+1 -
04l i ~L» 5;.+H = 7O 4L E;.«V,H = O -1, ch.,?r ) = —Oy i+ L ch
g () _ “ M

Oy, and F = — A [Eog(0y 3141 — 0w 9—1) + Eoy(0y 1, — 0 5

The elements in the first and the last rows of matrix H in Eq. (4),
ever, must be described in accordance with the boundary conditions.
parallel boundaries (zero on the bottom and unity on the top) are

11 LL .
then quv = Fm ] ) = b5 for the periodic boundary conditions, the n

; elements are described by relations similar to Eq. (3). We should poir

that for the periodic boundaries, the matrix H has rank L2 — 1, a

_order for the system to have a solution, one of the site potentials mt
. grounded.
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